drechsler-magnetics Ingenieurbüro

Software-Tools zur Berechnung von Kern- und Wicklungsverlusten induktiver Bauelemente für die Leistungselektronik

Universal	Flusswandler	Sperrwandler	LLC-Converter	DC-PFC-Drossel
-----------	--------------	--------------	---------------	----------------

Inhaltsverzeichnis

Einleitung	Seite 2
Universal	3
Formular frmStromeingabe Formular frmStromgrafik Formular frmKernauswahl Formular frmKomponentengrafik Formular frmWicklungsaufbau Formular frmKernverluste	3 3 6 8 9 12
Formular frmSonderkerne	12

Flusswandler	15
Formular frmKernauswahl	15
Formular frmWicklungsoptimierung	17
Sperrwandler	20
Formular frmKernauswahl	20
Formular frmWicklungsoptimierung	21
LLC-Converter	22
Formular frmGrunddateneingabe	22
DC-PFC-Drossel	24
Formular frmPFC-Drossel	24
Formular frmStromgrafik	25

Einleitung

Die im Folgenden beschriebenen Software-Tools zur Berechnung von Kernund Wicklungsverlusten induktiver Bauelemente sind für Leistungselektronik-Entwickler gedacht, die diese Komponenten zielgerichtet, ohne mehrere Zwischenstufen von Labormustern optimieren wollen.

Sie wurden von einem Fachmann entwickelt, der einerseits selbst langjähriger Entwickler von Leistungselektronik-Geräten war und anderseits über die entsprechenden Kenntnisse der theoretischen Elektrotechnik und Mathematik verfügt. Die Tools haben inzwischen eine langjährige erfolgreiche Erprobung bei den Nutzern hinter sich.

Dem Streben nach Einfachheit der Bedienung sind dabei leider Grenzen gesetzt, bedingt durch die physikalische Komplexität dieser Komponenten. Die Tools sind trotzdem so angelegt, dass die teilweise recht komplizierten Berechnungen im Hintergrund ablaufen und so den Nutzer so wenig wie möglich belasten.

Die Tools gliedern sich in das Tool Universal und die Gruppe der Standard-Topologien (Flusswandler, Sperrwandler, LLC-Converter, DC- PFC-Drossel). Das Tool Universal ist für beliebige Topologien geeignet. Als Eingabedaten benötigt es die Wicklungsströme als Polygonzug und gegebenenfalls auch Wicklungsspannungen. Diese Daten muss sich der Entwickler selbst überlegen oder z. B. mit SPICE ermitteln. Die Gruppe der Standart-Topologien bezieht sich auf die Gesamtschaltung, die Eingabedaten lassen sich im Wesentlichen aus den Gerätespezifikationen (Eingangsspannung, Ausgangspannung, Ausgangstrom, Frequenz) ermitteln. Die für die Berechnung der Kern- und Wicklungsverluste erforderlichen Strom- und Spannungskomponenten berechnen sich die Tools selbst. Der Bedienungsaufwand ist damit relativ gering. Außerdem fallen automatisch Daten für die Dimensionierung der Leistungshalbleiter ab. Für die Berechnung der Übertemperaturen sind in den Tools einfache Modelle hinterlegt. Aus den unterschiedlichen Bauformen der induktiven Bauelemente folgt jedoch, dass für eine genauere Berechnung spezielle thermische Modelle erforderlich sind, die sich der Entwickler selbst überlegen muss.

Die gebräuchlichsten Kernreihen und Kernwerkstoffe sind in den Tools hinterlegt. Es können jedoch auch neue Kerne und Kernwerkstoffe eingegeben werden.

Alle Daten können abgespeichert werden. Alle Formulare sind mit Erklärungen (Hilfen) versehen.

Der Kreativität der Entwickler sind an keiner Stelle Grenzen gesetzt.

Universal

Das Tool Universal ermöglicht die Berechnung von Kern- und Wicklungsverlusten beliebiger Topologien. Es besteht aus den Formularen (Arbeitsblättern) frmStromeingabe, frmStromgrafik, frmKernauswahl, frmKomponentengrafik, frmWicklungsaufbau , frmKernverluste und frmSonderkerne.

Formular frmStromeingabe

In dieses Formular können bis zu fünf verschiedene Wicklungsströme als Polygonzug eingetragen werden (11/A ... 14/A, 15/A U/V, Zeit/Tp/%). Dabei weisen *I1* und *I3* im Formular *frmKomponentengrafik* die folgenden Besonderheiten auf: 11 kann in eine erste und eine zweite Halbperiode (z.B. Schalter), 13 kann in eine positive und eine negative Halbperiode (Z.B. Dioden) aufgeteilt werden. 15/A U/V kann auch als Spannung interpretiert und als solche im Formular frmKernverluste zur Berechnung der Kernverlustleistung benutzt werden. Bei Zweitakt-Topologien ist es ausreichend, nur die Werte bis 50%Tp auszufüllen, die restlichen Werte können mit den Tasten zweite HP (zweite Halbperiode) ergänzt werden. Die Polygonpunkte der Ströme sind frei wählbar, der Startpunkt muss jedoch einheitlich sein. Falls die Ströme aus SPICES übernommen werden, gilt folgendes: In die Felder Tspice können die Spice-Zeiten direkt ohne Umrechnung eingetragen und mit den Tasten Spice vtp in die Felder Zeit/Tp/% übertragen werden. Die Eintragung erfolgt dabei ohne Komma und nur der Zahlenteil, der sich in einer Periode oder Halbperiode ändert.

Bei Eintakt-Topologien ist der Polygonzug mit VP (volle Periode), bei Zweitakt-Topologien mit HP (halbe Periode) abzuschließen. Die Taste Löschen löscht die jeweiligen Felder. Des Weiteren ist die Eingabe der zugehörigen Frequenz in das Feld Frequenz/kHz und der Anzahl der Oberwellen NYend erforderlich.

16 verschiedene Datensätze (Arbeitspunkte) können mit den Tasten *Eingabe F01 … F16* abgespeichert werden. Nach Betätigen einer Taste *Ausgabe F01…F16* wird dieser Datensatz zur Kontrolle angezeigt. Im Formular *frmStromgrafik* werden die Ströme grafisch dargestellt.

Formular frmStromgrafik

In diesem Formular können die im Formular *frmStromeingabe* eingegebenen Wicklungsströme mit den Tasten *Ausgabe F01 … F16* grafisch dargestellt werden. Der aktivierte Datensatz steht dann für die Formulare *frmKernauswahl, frmKomponentengrafik, frmWicklungsaufbau* und *frmKernverluste* zur Verfügung. Die Maßstabsfaktoren *K11 … K15* sind frei wählbar und müssen von Hand eingegeben und angepasst werden. Sie werden dann automatisch in das Formular *frmKomponentengrafik* übernommen. Die Wicklungsströme sind jeweils mit den gleichen Farben markiert.

Rahmen Transfer

Dieser Rahmen gestattet das Umsortieren von Strömen innerhalb eines Datensatzes. Hierzu sollte man den betreffenden Datensatz im Formular *frmStromeingabe* in einen unbenutzten Bereich kopieren. Mit den Tasten *lx von F* und *ly nach F+1* kann dann die gewünschte Umsortierung vorgenommen werden. Der neue Datensatz ist eine Nummer höher abgespeichert und kann im *frmStromeingabe* beliebig umkopiert werden.

Rahmen Strom Primär/Sekundär

Dieser Rahmen gestattet die Berechnungen

- 13 (Sekundärstrom) = 11 (Primärstrom) 15 (Magnetisierungsstrom) und
- I1 (Primärstrom) = I3 (Sekundärstrom) + I5 (Magnetisierungsstrom)
- durch entsprechende Markierung der Kontrollkästchen.

Die neuen Ströme *I1* bzw. *I3* stehen in den Formularen *frmStromgrafik, frmKomponentengrafik, frmWicklungsaufbau* und *frmKernverluste* zur Verfügung. Die Markierung muss über die Nutzungsdauer bestehen bleiben. Die Ströme stehen im *frmStromeingabe* nicht zur Verfügung.

						frmStromeinga	be/Universal								
TypWicklung	1														
												Eingab	e	Ausga	be
11/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Löschen				
Zeit/1p/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000					
Ispice	U	U	U	U	UJ	U	U	U	U	U	Spice vtp	F16	C	F16	C
11/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	zweite HP	F15	C	F15	C
Zeit/Ip/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Läschen	F14	C	F14	C
Tspice	0]	UJ	U U	0]	ŋ	U	ŋ	U	ŋ	U	Luschen		~	510	-
												F13	C	F13	C.
12/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Löschen	F12	C	F12	C
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		F11	C	F11	C
Ispice	U	UJ	U	UJ	U	U	UJ	UJ	U	U	Spice vtp				
12/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	zweite HP	F10	C	_F10	C
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		F09	C	F09	С
Ispice	0	0	0	0	0)	0]	0]	0]	0	0	Loschen	F08	C	F08	C
													~		~
13/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Löschen	FU7	0	FU7	C
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		F06	C	F06	C
Tspice	0	0]	0]	0]	0	0	0)	0]	0)	0	Spice vtp	F05	C	F05	C
13/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	zweite HP	EDA	C	EDA	C
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		104	*	104	
Tspice	0	0	0	0	0	0	0	0]	0	0	Löschen	F03	C	F03	C
												F02	C	F02	C
14/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Lässhan	C01	~	E01	~
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	Loschen			rui	
Tspice	0	0	0	0	0	0	0	0	0	0	Spice vtp	F	requer	nz/kHz	
14/A	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	zweite HP			100.00	
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				100,00	10
Tspice	0	0	0	0	0	0	0	0	0	0	Löschen		NYe	end	
												_			-
15/A U/V	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	12.4			10	10
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Loschen				
Tspice	0	0	0	0	0	0	0	0	0	0	Spice vtp				
15/A U/V	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	zweite HP	Hill	e		
Zeit/Tp/%	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		L			
Tspice	0	0	0	0	0	0	0	0	0	0	Löschen	frmStrom	ngrafik	frmb	Menü
N 20															

Formular frmStromeingabe/Universal

Formular frmStromgrafik/Universal

Formular frmKernauswahl

Die Benutzung dieses Formulars ist optional. Es können Kerndaten auch direkt in die Formulare eingegeben werden.

Aus dem Rahmen Kern-Reihe eine Kern-Reihe auswählen.

Im Rahmen Grunddateneingabe sind die folgenden Werte einzutragen:

Zvluft

Faktor der angibt, wie sich der therm. Oberflächenwid. bei Zwangsbelüftung verkleinert,

el Zwaligsbeluituig verkiellert,

Zvluft =1 entspricht freier Konvektion,

Zvluft = 2 entspricht etwa 1,5m/s Luftgeschwindigkeit

Sgrenz/mm nichtbewickelte Breite der Wicklung an den Rändern in mm Taste *Kernauswahl* drücken.

Durch Klicken (Spalte ganz links) in die entsprechende Zeile gewünschten Kern auswählen.

Die folgenden Kerndaten werden zur Information ausgegeben und stehen dann für die nachfolgenden Formulare zur Verfügung:

Kern	Name des ausgewählten Kerns
Bwred/mm	Breite der Wicklung in mm, reduziert um 2 x Sgrenz/mm
Hw/mm	verfügbare Höhe der Wicklung in mm
Lw/mm	mittlere Windungslänge in mm
Fm/mm²	magnetischer Querschnitt in mm ²
Vm/mm³	magnetisches Volumen in mm ³
Ст	Konstante, die zusätzliche Kernverluste berücksichtigt,
	bedingt durch Kernform und Kerngröße
D. 114 1.14	

Rt/K/W thermischer Oberflächenwiderstand des Bauteils

Der ausgewählte Kern wird im Ausgabefeld Kern angezeigt.

Rahmen Übertemperaturen

In diesem Rahmen werden die Verlustleistungen Pfe und Pcu in Übertemperaturen umgerechnet. Mit der Taste Übernahme Pfe/Pcu werden die in den Formularen frmWicklungsaufbau und frmKernverluste ermittelten Verlustleistungen in die Eingabefelder Pfe/W sowie Pcu/W übernommen. Es können jedoch auch andere Verlustleistungswerte eingegeben werden. Mit der Taste Übertemperaturen erhält man in den Ausgabefeldern die Übertemperaturen.

DTke/K Übertemperatur des Kerns in K

DTwi/K Übertemperatur der Wicklung in K

Rahmen Al-Wert/Luftspalt

In diesem Rahmen kann ein *Al-Wert/nH* in einen *Luftspalt/mm* bzw. ein Luftspalt in einen Al-Wert umgerechnet werden.

TypWicklung

frmKernauswahl/Universal

Kern-Reihe -				
• ETD	C PM	C EILP	C UU	C RING
C EFD	C RM	C EELP	O AMCC	
C EE	C PQ	C EIQ	○ F3CC	
C EVD		C EEQ		

0,000

Kern	Bwred/mm	Hw/mm	Lw/mm ²	Fm/mm ²	Vm/mm ³	Cm	Rt/(K/W)
ETD19	16,40	2,20	38,30	39,50	2440,0	1,101	43,40
ETD24	18,00	3,70	44,60	55,00	3690,0	1,101	33,10
ETD29	19,40	4,90	52,80	71,00	5350,0	1,101	24,50
ETD34	20,90	5,80	60,50	91,60	7630,0	1,106	20,00
ETD39	25,70	6,90	69,00	123,00	11500,0	1,111	15,20
ETD44	29,50	7,10	77,70	172,00	17800,0	1,117	11,80
ETD49	32,70	8,20	86,00	209,00	24100,0	1,124	9,63
ETD54	36,80	8,50	96,00	280,00	35600,0	1,135	7,58
ETD59	41,20	8,80	106,00	368,00	51200,0	1,217	6,07
SonderE (ETD59)	41,20	8.80	106.00	368,00	51200.0	1,217	6.07

K. ET	ern D19					 Al-Wert 	C Luftspalt	
						Al-Wert/nH	100,000	
					-6			
n .						Al-Wert/nH	Luftspalt/mm	
Übertemperatu	iren	Übernahme Pfe/Pcu			E	Al-Wert/nH	Luftspalt/mm	
- Übertemperatu Pfe/W	ren Pcu/W	Übernahme Pfe/Pcu	DTke/K	DTwi/K	E	Al-Wert/nH	Luftspalt/mm	
Übertemperatu Pfe/W	uren Pcu/W 0,000 0,000	Übernahme Pfe/Pcu Übertemperaturen	DTke/K	DTwi/K	E	Al-Wert/nH	Luftspalt/mm	

Formular frmKernauswahl/Universal

Formular frmKomponentengrafik

In diesem Formular werden die Ströme aus dem Formular *frmStromgrafik* den realen Wicklungen zugeordnet. Im Feld *Wmax* ist die maximale Anzahl der Wicklungen einzutragen. Zur Verfügung stehen die Ströme *11 ... 15* sowie *11 erste Halbperiode, 11 zweite Halbperiode, 13 positive Halbperiode, 13 negative Halbperiode* und der *0-Strom*. Mit der daneben liegenden Taste wird der Strom aktiviert und markiert.

Er kann dann mit den Tasten *Eingabe Wxy* (steht für W01...Wmax) in die entsprechende Wicklung übernommen werden. Mit den Tasten *Ausgabe Wxy* erfolgt die Ausgabe des Stromes zur Kontrolle und möglicherweise zum Kopieren in andere Wicklungen.

Die Maßstabsfaktoren *Kws* werden identisch mit denen in *frmStromgrafik* automatisch festgelegt. Ein Wicklungsverband kann somit völlig frei gestaltet werden.

Formular frmWicklungsaufbau

Rahmen Wicklung

Mit der Taste Übernahme-Kern werden die Kerndaten aus dem Formular *frmKernauswahl* übernommen. Es können jedoch auch andere Werte festgelegt werden. Im Rahmen *Wicklung* werden dann die geometrischen Daten der Wicklung wie in einer Zeichnung ein- oder ausgegeben.

ax/mm, ay/mm	Leiterabmessungen in mm
Lagenzahl	Anzahl der Lagen
Wdg/Lage	Windungen/Lage
bwx/mm, bwy/mm	Wicklungsabmessungen in mm
mittl. WindLänge/mm	mittlere Windungslänge in mm
Nparallel	Parallelschaltung von Leitern unter Voraussetzung gleicher Ströme in allen Leitern (HF-Litze)
RHO/(Vmm/A)	spezifische Widerstand des Leiters in Vmm/A
bwyk/mm	y-Kernfenster in mm
Kern	Kerntyp

Im Ausgabefeld Windungszahl wird die Windungszahl angezeigt

(Lagenzahl x Wdg/Lage / Nparallel). Im Sub-Rahmen *Flachband/Runddraht* kann der Leiter von Flachband auf Runddraht umgeschaltet werden. Statt ax und ay wird dann der Drahtdurchmesser *dia/mm* eingegeben.

Zur Kontrolle kann die Wicklung mit den Tasten Ausgabe Wxy (steht für W01...Wmax) überprüft werden.

Mit der Taste *Optimierung ay* bzw. *Optimierung dia* kann eine Wicklung bezüglich der Wicklungsverluste optimiert werden (relatives Minimum).

Der Wicklungsverband wird durch die Wicklungen W01...Wmax gebildet. Die Verlustleistungen der Wicklungen und des Verbandes werden angezeigt.

Für die Berechnung von Wicklungsverbänden mit Luftspaltanordnungen sind spezielle Einstellungen erforderlich. Die Anweisungen hierfür sind in den Hilfen 3...7 enthalten.

Im Bild werden auch die Richtungen der Strom- und Feldkomponenten definiert.

Rahmen Verlustleistung

Im Rahmen *Verlustleistung* kommen die fünf Verlustleistungsanteile der Komponenten *x* und *y* entsprechend der Grundlagen-Dokumentation zur Anzeige, des Weiteren die Summe der Komponenten *x* und *y* sowie die gesamte Verlustleistung der Wicklung *Pcu gesamt/W*. Im Feld *Pcu dc/W* kommt die ohmsche Verlustleistung zur Anzeige. Die Taste *Verlustleistung* löst die Berechnung aus.

Formular frmWicklungsaufbau/Universal

Formular frmWicklungsaufbau/Universal

Hilfe 3 Einstellungen von Wicklungsverbänden mit Luftspaltanordnungen (Beispiel EE- und EI-Kerne)

Formular frmKernverluste

Mit Taste Übernahme-Kern werden die Kerndaten aus dem Formular frmKernauswahl übernommen oder es werden neue Werte festgelegt (magn. Volumen, Kernformkonstante, magn. Querschnitt Fm, Kern). Mit der Taste Übern. Kern-Werkstoff wird der Kern-Werkstoff aus dem Rahmen Kern-Werkstoff übernommen.

Mit der Taste Übernahme-Wicklung kann die magn. Flussdichte aus den vorherigen Formularen berechnet werden, wenn vorher der Al-Wert/nH eintragen wurde. AC-Verlustleistung/W, Displacement-Faktor und Kernverlustleistung/W werden angezeigt, des Weiteren der magn. Flussdichte-Zeit-Verlauf, wenn vorher der Maßstabsfaktor K B/mT eingetragen wurde. Verfahren setzt exakte Stromeingabe Dieses erste eine (Magnetisierungsstrom) voraus.

Als zweites Verfahren kann die Kernverlustleistung aus der Spannungs-Zeit-Fläche berechnet werden. Bei Benutzung der Taste *U/B-Wandlung* wird der Inhalt des Rahmens *Flussdichte B/Spannung U* als Spannung interpretiert und zur Kontrolle angezeigt. Sie wird dann in Flussdichte umgerechnet und zur Kontrolle angezeigt. Im Feld *Kernverlustleistung/W* wird die Verlustleistung angezeigt.

Mit der Taste Übernahme Spannung kann der Inhalt des aktuellen Rahmens *I5/A U/V* aus dem Formular *frmStromeingabe* in den Rahmen *Flussdichte B/ Spannung U* übernommen werden (mehrere Arbeitspunkte).

Als drittes Verfahren kann die Kernverlustleistung aus dem Flussdichte-Zeit-Verlauf berechnet werden. Bei Benutzung der Taste Verlustleistung/W_mT wird der Inhalt des Rahmens Flussdichte B/Spannung U als Flussdichte interpretiert. Die Kernverlustleistung/W wird angezeigt.

Formular frmSonderkerne

In diesem Formular können selbstentworfene Kerne als Ring-, EE/EI/UU/UI-, EELP- oder EILP-Kern eingegeben werden. Solche neuen Kerne entstehen z.B. durch Kernstapelung. Die eingegebenen Kerne erscheinen dann im Formular *frmKernauswahl/Rahmen Kernreihe* im Gitternetz als letzte Zeile und stehen dann für andere Formulare zur Verfügung.

Rahmen Vier-Punkt-Eingabe

Hier kann ein Sonder-Kern-Werkstoffe 1 durch vier Punkte eingegeben werden. Dieser Werkstoff kann dann im Rahmen *Kern-Werkstoff* mit der Option *SKW1* ausgewählt werden.

Rahmen Steinmetz-Eingabe

Hier kann ein Sonder-Kern-Werkstoff 2 als Steinmetz-Gesetz eingegeben werden. Da es um eine zugeschnittene Größen-Gleichung geht, müssen die Dimensionen angepasst werden. Im Kasten darunter stehen links die Systemeinheiten von *drechsler-magnetics*, ganz rechts müssen die Systemeinheiten des Steinmetz-Gesetzes und dazwischen der jeweilige Proportionalitätsfaktor eingetragen werden. Dieser Werkstoff kann dann im Rahmen *Kern-Werkstoff* mit der Option *SKW2* ausgewählt werden.

Mit den Tasten *Eingabe* bzw. *Ausgabe W01...16* können nun 16 verschieden ausgefüllte Datensätze übernommen bzw. ausgegeben werden.

Im *Rahmen Ausgabe-Auswahl* kann festgelegt werden, welche der vier Sonder-Rahmen ausgegeben werden soll (die anderen bleiben dann unverändert). Damit kann nachträglich eine Sortierung und Neuabspeicherung vorgenommen werden.

Formular frmKernverluste/Universal

				frmSonderke	erne/Universal						
ypWicklung											
onder-Ringkern									Eingabe	Ausg	gabe
Kem	Volume/mm ³	CrossSect/mm ²	Pathl ength/mm	0.D./mm	LD./m	n	H.T./mm				
SonderRing (R77,8)	45300,0	227,00	199,50	78	,90	48,20	13000,0		16 (16	1 C
			Protein Drift Revenue		410807				15 (15	10
onder-EE/EI/UU/UI/EELP/E	LP-Kern								14 (14	C
Kern	Vm/mm ³	Fm/mm ²	Lw/mm B	w/mm	Hw/mm	Rt/(K/₩)	K1	K2 Cm	13 (13	10
5xUU126/182/20	1345000,0	2800,00	388,00	90,00	35,00	1	,00 3	517,0 -0,800 1,300	12 (12	1 c
									11 (11	i c
er-Punkt-Eingabe							Aus	gabe-Auswahl		10	
Sonder-Kern-Werkstoff 1	Ú.								09 1		
SKW1 (Koolu)	41.							Sonder- Ringkern			
on r (root)										08	
P(f1,B2)/kW/m ³	1195,000	P(f2,B2)/kW/m	9452,	000	200,0	B2/mT		Sonder-EE/EI/UU/UI/		07	
P(f1,B1)/kW/m ³	18,840	P(f2,B1)/kW/m	138,	800	25,0	B1/mT		EELF7EILF KGIII	(06	
—	50.000		200	000					05 (05] C
	11/LU-		(2/LU2	000				Vier-Punkt Eingabe	04 (04	1 C
	117KH2		12/112						03 (03	1 c
								Steinmetz-Eingabe	02 (02	I C
einmetz-Fingahe								1	01 /	- 01	16
	r i										7
Sonder-Kern-Werkstorr 2			eB] [eF						
SKW2 (MPP125µ)	_	C	2,310	i _ [1,400						
	$\mathbf{P} = \mathbf{r}$	1 199	• B	• F							
	-	1,100	_	-							
	1	mT -	0.01 1.0	r							
System-	inheiten	mi -	U,UT KGauss		Basis-Einheit	en					
drechsler	magnetics	KHZ =	1 kHz		Steinmetz-Ges (Beispiel Magn	etz etics]					
-	1 k	₩/m³ =	1 m\/cm ³								
		Unrechn	ungs-Faktor					1177 4	1174 0		

Formular frmSonderkerne/Universal

Flusswandler

Das Tool *Flusswandler* ermöglicht die Berechnung der Kern- und Wicklungsverluste von Flusswandlertopologien. Es besteht aus den Formularen *frmKernauswahl*, frmWicklungsoptimierung, *frmStromgrafik*, *frmKomponentengrafik*, *frmWicklungsaufbau*, *frmKernverluste und frmSonderkerne*. Bei diesem Tool werden die Wicklungsströme aus den Einund Ausgangsdaten des Flusswandlers berechnet. Das bringt im Vergleich mit Tool *Universal* eine wesentliche Verkürzung der Bearbeitungszeit.

Formular frmKernauswahl

In diesem Formular werden die erforderlichen Grunddaten für die Dimensionierung eines Flusswandlers eingegeben. Im Anschluss daran wird aus einer Kernreihe eine erste Auswahl der Kerngröße vorgenommen. Es wird primärseitig Spannungsspeisung, sekundärseitig Stromspeisung (Drossel) vorausgesetzt.

Aus dem Rahmen *Takt-Schema* ein Takt-Schema auswählen.

Aus dem Rahmen Mittelpunkt-Wicklung ein Mittelpunkt-Schema auswählen.

Aus dem Rahmen Kern-Reihe eine Kern-Reihe auswählen.

Aus dem Rahmen *Kern-Werkstoff* einen Kern-Werkstoff auswählen. Im Rahmen *Grunddateneingabe* sind die folgenden Werte einzutragen:

	5 0 0						
Uemax/V	maximale Eingangsspannung in V						
Uenenn/V	Nenn-Eingangsspannung in V						
Uemin/V	minimale Eingangsspannung in V (Regelgrenze)						
Cimagnenn	prim. Stromwelligkeit durch Magnetisierungsstrom						
	bei Nennbed.						
Uanenn/V	Nenn-Ausgangsspannung in V						
Udfluss/V	Dioden-Flussspannung in V (bei Grätz-Brücke 2x, sonst 1x)						
Ianenn/A	Nenn-Ausgangsstrom in A						
Ciwellnenn	Drossel-Stromwelligkeit bei Nennbedingungen						
Vtmax	maximales Tastverhältnis						
Vflanke/%	Flankenanstiegszeit in % von der Periodendauer Tp						
Ftakt/kHz	Taktfrequenz in kHz Ftakt = 1/Tp (Tp Periodendauer)						
Bsat/mT	angenommene Sättigungsflussdichte in mT						
Ktvor	Reduktionsfaktor von Vtmax bei Uemax						
	(Vorwärtssteuerungsfaktor <=1)						

Zvluft	Faktor der angibt, wie sich der thermische
	Oberflächenwiderstand bei Zwangsbelüftung verkleinert
Sgrenz/mm	nichtbewickelte Breite der Wicklung an beiden Rändern in mm
Wentmag/Wp	(Windg EntmagWicklung)/(Windg. Primärwicklung),
	nur Ein-Takt, verschwindet bei Zwei-Takt und Phase-Shift
RHO/(Vmm/A)	spez. Widerstand des Leitermaterials
	(standardmäßig Cu 100 Grd. C) in Vmm/A

Taste Kernauswahl drücken.

Für alle Kerne der ausgewählten Reihe werden im Gitternetz die folgenden Werte ausgegeben:

Kern	Name des Kerns
Pfe/W	Kernverlustleistung in W
Pcu/W	Wicklungsverlustleistung in W
DTke/K	Übertemperatur Kern in K
DTwi/K	Übertemperatur Wicklung in K

Durch Klicken (Spalte ganz links) in die entsprechende Zeile gewünschten Kern auswählen.

Die Kernverlustleistung wurde dabei bereits exakt berechnet, die Wicklungsverlustleistung ist ein erster Schätzwert. Bei einem optimierten induktiven Bauelement sollten Kernverluste Pfe und Wicklungsverluste Pcu ungefähr gleich sein. Falls Pfe größer als Pcu ist, kann durch eine Verkleinerung der angenommenen Sättigungsflussdichte Bsat/mT das Gleichgewicht wieder hergestellt werden. Falls jedoch Pfe kleiner als Pcu und die wirkliche Sättigungsflussdichte erreicht ist, dann muss man das so akzeptieren.

Mit der Taste *frmWicklungsoptimierung* erreicht man das Formular *frmWicklungsoptimierung*.

kt-Schema	- Mittelnunkt-Wicklung -	Kern-Beihe		na neishiei	roronigosten	c, Ergeonia. DT	-KeinWe	rk stoff					
	Millepunkt-wicklung	C STD	0.04		~	0.0000	C NO7	C NIA		C K 1	C 115 00	C 18/ 44	0.040.41
C Ein-Takt-21	O ohne	• EID	C PM	O EILP	O UU	C RING	O NZ/	C N49	C AMLL	Ο Κοοίμ	О НЕµ26	C ΜΧμ14	O SKWI
C Ein-Takt-1T	C primär	C EFD	C BM	C EELP	C AMCC		O N67	C ML27D	C F3CC	⊖ Кµ14	C HFµ60	C MXµ19	⊖ SK₩2
Zwei-Takt	sekundär	C EE	C PQ	C EIQ	C F3CC		• N87	C Fi337	C FT-3T	L C Kµ26/4	D	C MXµ26/60	O -26
🔿 Phase-Shift	C prim.+sek.	C EVD		C EEQ			C N97	C N92		⊂ Кµ60/1	25	○ HiF60µCSC	C -52
	Grunddateneingabe												
	Uemax/V	400,000	Uanenn/V		24,000	Vtmax		0,900		Zvluft	1,000	ī	
	Uenenn/V	380,000	Udfluss/V		1,000	Vflanke/%	:	1,000	Sg	renz/mm	4,000	ī	
	Uemin¥	360,000	lanenn/A		25,000	Ftakt/kHz		100,000	i i				
	Cimagnenn	0,050	Ciwellnenn		0,100	Bsat/mT		135,000	RHO	/(Vmm/A)	0,0000230	ī	
										BHO (C., 10	(Chran)		
	Kernauswahl	1				Ktvor		1,000		0,000023	/mm/A		
	Kernauswahl		Pfe/W		Pcu	Ktvor		1,000 DTke/K		0,000023	i/K		
	Kernauswahl		Pfe/W	0.245	Pcu	Ktvor		1,000 DTke/K	4036,676	0,000023V	i/K 7388.858		
	Kernauswahl		Pfe/W	0,245 0,371	Pcu	Ktvor /w 90,490 27.146		1,000 DTke/K	4036,676 904,784	0,000023V	i/K 7388,858 1722.167		
	Kernauswahl		Pfe/W	0,245 0.371 0,538	Pcu	Ktvor /w 90,490 27,146 12,774		1,000 DTke/K	4036,676 904,784 317,618	0,000023	i/K 7388,858 1722.167 616,862	-	
	Kernauswahl ETD19 ETD24 ETD29 ETD34 ETD34		Pfe/W	0,245 0.371 0,538 0,774	Pcu	Ktvor /w 90,490 27.146 12,774 6,565		1,000 DTke/K	4036,676 904,784 317,618 143,608	0,000023	i/K 7388,858 1722,167 616,862 263,734		
	Kernauswahl ETD19 ETD24 ETD24 ETD29 ETD34 ETD39 ETD39		Pfe/₩	0,245 0,371 0,538 0,774 1,176	Pcu	Ktvor /W 90,490 27.146 12,774 6,565 2,565		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 32,990	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921		
	Kernauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39 ETD44 ETD49		Pfe/₩	0,245 0.371 0,538 0,774 1,176 1,840 2,522	Pcu	Ktvor 90,490 27,146 12,774 6,565 2,544 1,172 0,652		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 37,990 33,836	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921 43,591 33,102		
	Kernauswahl ETD19 ETD24 ETD24 ETD29 ETD34 ETD39 ETD44 ETD49 ETD54		Pfe/₩	0,245 0,371 0,538 0,774 1,176 1,840 2,522 3,797	Pcu	Ktvor 90,490 27,146 12,774 6,565 2,544 1,172 0,662 0,341		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 37,990 33,836 35,280	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921 43,591 33,102 30,639		
	Kernauswahl		Pfe/W	0,245 0,371 0,538 0,774 1,176 1,840 2,522 3,797 6,259	Pcu	Ktvor 90,490 27,146 12,774 6,565 2,544 1,172 0,662 0,341 0,183		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 37,990 33,836 35,280 44,221	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921 43,591 33,102 30,639 36,449		
	Kernauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39 ETD44 ETD49 ETD59 SonderE (ETD59	9)	Pfe/₩	0,245 0,371 0,538 0,774 1,176 1,840 2,522 3,797 6,259 6,259	Pcu	Ktvor 90,490 27.146 12,774 6,565 2,544 1,172 0,662 0,341 0,183 0,183		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 37,990 33,836 35,280 44,221 44,221	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921 43,591 33,102 30,639 36,449 36,449		
	Kernauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39 ETD44 ETD44 ETD49 ETD59 SonderE (ETD59	9)	Pfe/W	0,245 0,371 0,538 0,774 1,176 1,840 2,522 3,797 6,259 6,259	Pcu	Ktvor 90,490 27,146 12,774 6,565 2,544 1,172 0,662 0,341 0,183 0,183		1,000 DTke/K	4036,676 904,784 317,618 143,608 57,195 37,990 33,836 35,280 44,221 44,221	DTw	i/K 7388,858 1722,167 616,862 263,734 84,921 43,591 33,102 30,639 36,449 36,449		

Formular frmKernauswahl/Flusswandler

Formular frmWicklungsoptimierung

In diesem Formular werden die Windungszahlen optimiert, das Lastverhalten analysiert und die Wicklung optimiert.

Rahmen Optimierung der Windungszahlen

Mit der Taste *Topologie-Ausgabe* werden die im Formular *frmKernauswahl* ermittelten Werte in der ersten Zeile in den entsprechenden Ausgabefeldern ausgegeben:

Wp	primäre Windungszahl
Ws	sekundäre Windungszahl
Al-Wert/nH	erforderlicher Al-Wert des ausgewählten Kerns in nH
Pfe/W	Kernverlustleistung in W
Pcu/W	Wicklungsverlustleistung in W
DTke/K	Übertemperatur des Kerns in K
DTwi/K	Übertemperatur der Wicklung in K
Uemin/V	minimale Eingangsspannung in V (Regelgrenze)
Vtnenn	Tastverhältnis bei Nennbedingungen
DBmax/mT	maximaler Flussdichtehub in mT (z. B. bei Lastsprüngen)
DBnenn/mT	Flussdichtehub bei Nennbedingungen in mT
Cimagnenn	primärseitige Stromwelligkeit durch Magnetisierungsstrom
	bei Nennbedingungen

In die Eingabefelder *Wp, Ws, Al-Wert/nH* in der zweiten Zeile werden die in der ersten Zeile ermittelten Werte mit der Taste *Ü.Wdg.* (Windungszahlen) bzw. *Ü.Al-W*. (Al-Wert) übernommen oder es werden neu gewählte Werte eingetragen.

Mit der Taste *Wdg. neu* werden die daraus neu berechneten Werte in der zweiten Zeile ausgegeben. Mit den neu gewählten Windungszahlen kann das Verhältnis von Pfe zu Pcu ein zweites mal beeinflusst werden.

Des Weiteren werden die folgenden Kerndaten zur Information ausgegeben:

Kern	Name des ausgewählten Kerns
Kern-Werkstoff	Name des ausgewählten Kern-Werkstoffs
Bwred/mm	Breite der Wicklung in mm, reduziert um zweimal Sgrenz
Hw/mm	verfügbare Höhe der Wicklung in mm
Lw/mm	mittlere Windungslänge in mm
Fm/mm²	magnetischer Querschnitt in mm ²
Vm/mm³	magnetisches Volumen in mm ³
Rt/K/W	thermischer Oberflächenwiderstand des Bauteils
Ст	Konstante, die zusätzliche Kernverluste berücksichtigt,
	bedingt durch Kernform und Kerngröße

Rahmen Lastverhalten

In diesem Rahmen kann das Verhalten der gewählten Topologie mit den bisher festgelegten Parametern bezüglich der Variablen *Ue/V, Ia/Ianenn* und *Ua/V* analysiert werden.

Ue/V	Eingangsspannung in V
la/lanenn	Faktor Ausgangsstrom/Nenn-Ausgangsstrom
Ua/V	Ausgangsspannung in V
Vt	Tastverhältnis
Ip+/A	pos. Strom in Primärwicklung in A, für Cimag=0 und Ciwell=0
Ip-/A	neg. Strom in Primärwicklung in A, für Cimag=0 und Ciwell=0
Is+/A	pos. Strom in Sekundärwickl. in A, für Cimag=0 und Ciwell=0
Is-/A	neg. Strom in Sekundärwickl. in A, für Cimag=0 und Ciwell=0
Cimag	primärseitige Stromwelligkeit durch Magnetisierungsstrom
Ciwell	Drossel-Stromwelligkeit
B+/mT	positive Spitzen-Flussdichte in mT
B-/mT	negative Spitzen-Flussdichte in mT

Mit der Taste Übernahme Xnenn werden die entsprechenden Nennwerte in die Eingabefelder Ue/V, Ia/Ianenn, Ua/V übernommen oder es können beliebige neue Werte eingetragen werden. Mit der Taste Aktualisieren werden die Werte in die entsprechenden Ausgabefelder des Gitternetzes eingetragen. Die Taste Lösche Zeile löscht die angeklickte Zeile.

	opologie-Auso	abe	Wp	Ws	Al-Wert/	/nH	Pfe/W	Pcu/W	1	DTke/K	DTwi/K	Uemin/V	Vtnenn	DBmax/mT D	Bnenn/mT	Cimagn
			38,7	60 3.	059 534	44,410	1.84	0 1.1	72	37,990	43,591	360,000	0,854	270,000	237,600	0.
.Wdg.	Ü.Aŀ₩.	Wdg. neu	38,0	00 3,0	350	00,000	1,94	9 1,1	27	38,981	43,897	359,849	0,853	275,398	242,248	0,
1	Kern	Kern-We	rkstoff	Bwred./mm	Hw/mm	1	_w/mm	Fm/mm ²	V	/m/mm²	Bt/(K/W)	Cm		Luftspalt/mm	n	
E	TD44	N8	7	21,50	7,1	10	77,70	172,00		17800,0	11,80) 1,1	17			
tverhalt	en				211											
	380,000	1,000	24,0	00 Übenhahm	e Xnenn	Aktua	alisieren	Lösche Z	eile							
	Ue/V	la/lanenn	Ua/V	Vt	lp+/A	4	lp-/A	Is+/A		Is-/A	Cimag	Ciwe		B+/mT	B-/m	л
	380,000	1,000	24,0	00 0,	853	1,974	-1,97	4 25	,000	-25,000	0,07	9	0,100	121,12	4 -1	21,124
															1	
						-										
94).		1		k.	504							3.	16			
klungso Vicklun Op-s- Os-p- (p-s-	optimierung — gs-Topologie p-p-s-p s-s-p-s s-o	S Flact	nbd/Runddr− b Ĉ Rd	Fbreite/n	ım Fbre	ite/Mlei	it Npar	allel	ideal	Fhid/	mm F 0.207	höhe/mm		Pcu/Pfe	Po	u∕W
C s-D-	D-S			2	1,500	1.	,000	1 -				0,200)			
	F (F)	P Flack	b C Rd	Fbreite/m	m Fbre	ite/Mlei	it Npar	allel	ideal	Fhid/	mm F	höhe/mm]		Po	u/₩
			ox 0000010000000000000000000000000000000	2	1,500	1,	,000	1 -	laca		0,041	0,050	ī			U,

Formular frmWicklungsoptimierung/Flusswandler

Rahmen Wicklungsoptimierung

In diesem Rahmen erfolgt die Eingabe der Wicklungsdaten sowie die Optimierung der Wicklung. Alle folgenden Berechnung beziehen sich im Weiteren auf die drei Eingabefelder Ue/V, Ia/Ianenn und Ua/V im Rahmen Lastverhalten, auf die drei Eingabefelder Wp, Ws, Al-Wert/nH in der zweiten Zeile sowie auf Kern und Kern-Werkstoff im Rahmen Optimierung der Windungszahlen.

Im Sub-Rahmen Wicklungs-Topologie wird die Struktur der Wicklungen festgelegt (*p* steht für Primärwicklung, *s* für Sekundärwicklung). Alle Wicklungen werden als in Serie geschaltet betrachtet. Im Sub-Rahmen Flachbd/Runddr kann Flachband(*Fb*) oder Runddraht(*Rd*) ausgewählt werden.

Bei Flachband ist einzugeben

Fbreite/mmFlachbandbreite/mmFbreite/MleitFlachbandbreite/Mittenleiterabstand (linearer Füllfaktor)NparallelAnzahl der parallel geschalteten LeiterNach betätigen der Taste ideal erhält manFhid/mmideale Flachbandhöhe bezüglich der WicklungsverlustleistungDanach istFhöhe/mmreale Flachbandhöhe/mm einzugeben

Bei Runddraht ist einzugeben

Rdia/Mleit	Runddrahtdurchmesser/ Mittenleiterabstand
Nparallel	Anzahl der parallel geschalteten Leiter
Nach betätigen	der Taste ideal erhält man
Rdid/mm	idealer Runddrahtdurchm. bezüglich der Wicklungsverlustl.
Danach ist	
Rdia/mm	realer Runddrahtdurchmesser/mm einzugeben

Die Taste *Pcu/Pfe* gibt dann die Verlustleistungen der einzelnen Wicklungen in den entsprechenden Ausgabefeldern *Pcu/W* aus sowie im Rahmen *Übertemperaturen* die gesamte Wicklungsverlustleistung und Kernverlustleistung.

Bei Flachband ist innerhalb einer Wicklung nur *Nparallel* = 1 realisierbar. Runddraht kann als einfacher Runddraht (*Nparallel* = 1), als nebeneinander parallel gewickelter Runddraht (*Nparallel* > 1) oder als HF-Litze (*Nparallel* >>1) zur Anwendung kommen.

Rahmen Übertemperaturen

In diesem Rahmen werden die Verlustleistungen Pfe und Pcu in Übertemperaturen umgerechnet. Mit der Taste *Pfe/Pcu* werden die in diesem Formular ermittelten Verlustleistungen in die Eingabefelder *Pfe/W* sowie *Pcu/W* übernommen. Es können jedoch auch andere Verlustleistungswerte eingegeben werden. Mit der Taste *Übertemperaturen* erhält man in den Ausgabefeldern die Übertemperaturen.

DTke/KÜbertemperatur des Kerns in KDTwi/KÜbertemperatur der Wicklung in K

Wenn das Ergebnis der Formulare *frmKernauswahl* und *frmWicklungsoptimierung* den Erwartungen entspricht, ist die Dimensionierung beendet. Entspricht das Ergebnis nicht den Erwartungen, dann ist ein neuer Iterationsvorgang mit anderen Eingabewerten durchzuführen.

Die Taste Übergabe *frmKomponentengrafik/frmWicklungsaufbau* gibt alle Werte an die Formulare *frmKomponentengrafik* und *frmWicklungsaufbau* weiter.

Die Formulare *frmKernauswahl* und *frmWicklungsoptimierung* sind für die Berechnung induktiver Bauelemente bereits ausreichend, wenn es sich um Standard-Topologien handelt. Die weiteren Formulare dienen der Visualisierung der berechneten Werte sowie der Veränderung von Daten aus den vorgenannten Formularen oder der Neueingabe von Daten, die nur geringen oder keinen Bezug zu diesen haben. Sie haben keine Rückwirkung auf die Formulare *frmKernauswahl* und *frmWicklungsoptimierung*. Bei Luftspaltanordnungen sollte jedoch stets *frmWicklungsoptimierung* benutzt werden.

Die Formulare *frmStromgrafik*, *frmKomponentengrafik*, *frmWicklungsaufbau*, *frmKernverluste und frmSonderkerne* sind mit denen vom Tool *Universal* fast identisch und werden deshalb hier nicht noch einmal beschrieben.

Sheumand	ller-Übertr	ager Ue=380	0V/Ua=24V/Ia=	20A/f=75kH:	z als Beispiel vorein	gestellt, Ergebnis: D	Twi/K=80			
Kern-Reihe							Grunddateneingabe			
€ ETD	C PM	C EI	LP C UU	C BING	i		Uemax/V	400,000	Vtmax	0,500
C EFD	O BM	O EE		C			Uenenn/V	380,000	Vflanke/%	1,000
C EE	O PQ	C EI	Q 0 F3CC	:			UeminV	360,000	Ftakt/kHz	75,000
C EVD		C EE	Q				Uedt/V	380,000	Bsat/mT	320,000
KernWerk st	off						Uanenn/V	24,000		
C N27 C	NAG	C AMCC	C Koolu	C HE#26	C MX+14	C SKW1	Udfluss/V	1.000	Zvluft	1,000
0 N67 0	ML27D	C F3CC	⊖ Ku14	C HEu60	C MXu19	C SKW2	lanenn/A	20,000	Sgrenz/mm	4,000
0 N87 C	Fi337	C FT-3TL	C Ku26/40		C MXu26/60	C -26M	lamax/lanenn	1,100	RHO/(Vmm/A) RHO (Cu 10	0,0000230 0GrdC1
• N97 C	N92		C Ku60/125		C HiF60uCSC	C -52M	ladt/lanenn	0,800	0,000023	/mm/A
	Ke	rnaus w ahl								
	Ke	rnauswahl Kern	AI-We	ert/nH	Luftspalt/mm	Pfe∕₩	Pcu/W	DTke/K	DTwi/K	
	Ke	rnauswahl Kern ETD19	Al-We	ert/nH 10,525	Luftspalt/mm 16,918	Pfe/₩ 0,22	Рси/ W 6 228,957	DTke/K 10192,840	DTwi/K 18677,620	A
	Ke	rnauswahl Kern ETD19 ETD24	AI-We	ert/nH 10,525 20,407	Luftspalt/mm 16,918 8,328	Pfe/₩ 0,22 0,34	Pcu/W 6 228,957 2 68,684	DTke/K 10192,840 2265,569	DTwi/K 18677,620 4337,852	
	Ke	rnauswahl Kern ETD19 ETD24 ETD29	AŀWe	ert/nH 10,525 20,407 34,007	Luftspalt/mm 16,918 8,328 6,348	Pfe/W 0,22 0,34 0,49	Pcu/W 6 228,957 2 68,684 6 32,320	DTke/K 10192,840 2265,569 778,280	DTwi/K 18677,620 4337,852 1540,352	
	Ke	rnauswahl Kern ETD19 ETD24 ETD29 ETD24 ETD34	Al-We	ert/nH 10,525 20,407 34,007 56,603	Luftspalt/mm 16,918 8,328 6,348 4,034	Pfe/W 0,22 0,34 0,49 0,71	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611	DTke/K 10192,840 2265,569 778,280 333,740	DTwi/K 18677,620 4337,852 1540,352 643,577	
		rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39	Al-We	ett/nH 10,525 20,407 34,007 56,603 102,060	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433	Pfe/W 0,22 0,34 0,49 0,71 1,08	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437	DTke/K 10192,840 2265,569 778,280 333,740 111,112	DTwi/K 18677,620 4337,852 1540,352 643,577 187,865	
		rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD34 ETD39 ETD44	Aŀ₩e	ett/nH 10,525 20,407 34,007 56,603 102,060 199,574	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433 1,445	Pfe/W 0,22 0,34 0,49 0,71 1,08 1,69	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437 5 2,966	DTke/K 10192,840 2265,569 778,280 333,740 111,112 55,759	DTwi/K 18677,620 4337,852 1540,352 643,577 187,865 77,685	
		rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39 ETD44 ETD49	Aŀ₩e	ett/nH 10,525 20,407 34,007 56,603 102,060 199,574 294,672	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433 1,445 1,090	Pfe/W 0,22 0,34 0,49 0,71 1,08 1,69 2,32	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437 5 2,966 1 1.676	DTke/K 10192,840 2265,569 778,280 333,740 111,112 55,759 40,606	DTwi/K 18677,620 4337,852 1540,352 643,577 187,855 77,685 47,685	
		rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD34 ETD39 ETD44 ETD49 ETD54 ETD54	Aŀ₩e	ett/nH 10,525 20,407 34,007 56,603 102,060 199,574 294,672 528,886 249,572	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433 1,445 1,090 0,683 0,157	Pfe/W 0,22 0,34 0,49 0,71 1,08 1,69 2,32 3,48	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437 5 2,966 1 1.676 9 0,862	DTke/K 10192,840 2265,569 778,280 333,740 111,112 55,759 40,606 36,231	DTwi/K 18677,620 4337,852 1540,352 643,577 187,865 77,685 47,681 34,980	
		rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD34 ETD39 ETD44 ETD49 ETD59 ETC50	Aŀ₩e	ett/nH 10,525 20,407 34,007 56,603 102,060 199,574 294,672 528,886 913,570 913,570	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433 1,445 1,090 0,683 0,437 0,437	Pfe/W 0,22 0,34 0,49 0,71 1,08 1,69 2,32 3,48 5,68	Pcu/W 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437 5 2,966 1 1.676 9 0,862 8 0,462	DTke/K 10192,840 2265,569 778,280 333,740 111,112 55,759 40,606 36,231 41,828 41,828	DTwi/K 18677,620 4337,852 1540,352 643,577 187,865 77,685 47,681 34,980 36,025	
	Sonde	rnauswahl Kern ETD19 ETD24 ETD29 ETD34 ETD39 ETD44 ETD49 ETD54 ETD59 erE (ETD59)		ert/nH 10,525 20,407 34,007 56,603 102,060 199,574 294,672 528,886 913,570 913,570	Luftspalt/mm 16,918 8,328 6,348 4,034 2,433 1,445 1,090 0,683 0,437	Pfe/W 0,22 0,34 0,49 0,71 1,08 1,69 2,32 3,48 5,68 5,68	Pcu/w 6 228,957 2 68,684 6 32,320 4 16,611 4 6,437 5 2,966 1 1,676 9 0,862 8 0,462	DTke/K 10192,840 2265,569 778,280 333,740 1111,112 55,759 40,606 36,231 41,828 41,828	DTwi/K 18677,620 4337,852 1540,352 643,577 187,865 77,685 47,681 34,980 36,025	

Formular frmKernauswahl/Sperrwandler

Sperrwandler

Der Aufbau des Tools *Sperrwandler* ist weitgehend der gleiche, wie Tool *Flusswandler*. Es erfolgt deshalb keine eigenständige Beschreibung. Die folgenden Bilder zeigen die Formulare *frmKernauswahl* und *frmWicklungsoptimierung*.

Topologie-Aus	gabe	Wp	٧s	Al-Wert/n	H Luftspalt/mm	Pfe/W	Pcu/W	DTke/K	DTwi/K		
Topologic Aus	gabe	43,96	5 3,0	53 294	,672 1,090	2,321	1,676	40,606	47,681		-
Ü.₩dg.	Wdg. neu	44,00	0 3,0	294	,672 1,090	2,362	1,657	40,895	47,746	Udach/MOSFET/V	7
Kern	Kern-Wei	rkstoff B	wred./mm	Hw/mm	Lw/mm Fi	n/mm²	Vm/mm ³	Rt/(K/W)	Cm	700,	<u> </u>
ETD49	N97	7	24,70	8,20	86,00	209,00	24100,0	9,630	1,124		
verhalten											
380.000	1.000	24.000	Übenhahm	Xnenn Al	tualisieren	Lösche Zeile					
lle/V	la/lanenn	lla/V	To/us	Ts/us	(To+Tslus	Bmin/mT	Bmax/mT	Inmin/A	Inmax/A	Ismax/A	Ismin/A
380,000	1,000	24,000	6,54	6,786	13,333	30,940	301,503	0,499	4,80	60 71,282	7,315
klungsoptimierung –											
klungsoptimierung – /icklungs-Topologie)	bd/Runddr –		Pdia	Milet No.	walled	Pdis/mm],	Ddidlam	_	Bault
klungsoptimierung – /icklungs-Topologie © p-s-p-p-s-p	P Flach	bd/Runddr • • Rd		Rdia	/Mleit Npa	arallel	Rdia/mm	ideal	Rdid/mm 0,	086	Pcu/W 0,5
klungsoptimierung – /icklungs-Topologie O p-s-p-p-s-p O s-p-s-s-p-s	P Flach C Fb	bd/Runddr ●		Rdia	/Mleit Npa 0,648	rallel 105	Rdia/mm 0,071	ideal	Rdid/mm 0,	086	Pcu/W 0,5
klungsoptimierung – Vicklungs-Topologie © p-s-p-p-s-p © s-p-s-s-p-s © <u>p-s-p</u> © s-p-s	P Flach C Fb S Flach	bd/Runddr Rd bd/Runddr	Fbreite	Rdia. /mm Fbreit	/Mleit Npa 0,648 e/Mleit Npa	arallel 105 arallel F	Rdia/mm 0,071 höhe/mm	ideal	Rdid/mm 0, Fhid/mm	086	Pcu/W 0,5 Pcu/W
klungsoptimierung – /icklungs-Topologie © p-s-p-p-s-p © s-p-s-s-p-s © p-s-p © s-p-s	P Flach S Flach Flach	bd/Runddr ●	Fbreite	Rdia. /mm Fbreit 24,700	/Mleit Npa 0,648 e/Mleit Npa 1,000	arallel	Rdia/mm 0,071 höhe/mm 0,300	_ideal	Rdid/mm 0, Fhid/mm 55,	086 296 Pcu/Pfe	Pcu/W 0,5 Pcu/W 2,6
klungsoptimierung – /icklungs-Topologie © p-s-p-p-s-p © s-p-s-s-p-s © <u>p-s-p</u> © s-p-s © p-s © p-s © s-p	P Flach C Fb S Flach © Fb Flach	bd/Runddr Rd bd/Runddr C Rd bd/Runddr	Fbreite	Rdia. /mm Fbreit 24,700 Rdia.	/Mleit Npa 0,648 e/Mleit Npa 1,000	arallel	Rdia/mm 0,071 höhe/mm 0,300 Rdia/mm	ideal deal	Rdid/mm 0, Fhid/mm 55, Rdid/mm	086 296 Pcu/Pfe	Pcu/W 0,5 Pcu/W 2,6 Pcu/W
klungsoptimierung – /icklungs-Topologie © p-s-p-p-s-p © s-p-s-s-p-s © <u>p-s-p</u> © s-p-s © s-p-s © p-s p-s © s-p	P Flach ○ Fb S Flach P Flach ○ Fb	bd/Runddr Rd bd/Runddr Rd bd/Runddr bd/Runddr Rd	Fbreite	Rdia. /mm Fbreit 24,700 Rdia	/Mleit Npa 0,648 e/Mleit Npa 1,000 /Mleit Npa 0.648	arallel 105 arallel F 1 arallel	Rdia/mm 0,071 höhe/mm 0,300 Rdia/mm 0.071	ideal ideal	Rdid/mm 0, Fhid/mm 55, Rdid/mm 0,	086 296 Pcu/Pfe	Pcu/W 0,5 Pcu/W 2,6 Pcu/W 0,5
klungsoptimierung – /icklungs-Topologie © p-s-p-p-s-p © s-p-s-s-p-s © <u>p-s-p</u> © s-p-s © p-s © s-p	P Flach S Flach P Flach C Fb	bd/Runddr Rd bd/Runddr Rd bd/Runddr Md/Runddr Rd	Fbreite	Rdia. /mm Fbreit 24,700 Rdia.	/Mleit Npa 0,648 e/Mleit Npa 1,000 /Mleit Npa 0,648	arallel	Rdia/mm 0,071 höhe/mm 0,300 Rdia/mm 0,071	ideal deal deal	Rdid/mm 0, Fhid/mm 55, Rdid/mm 0,	086 296 Pcu/Pfe	Pcu/W 0,! Pcu/W 2,! Pcu/W 0,!

Formular frmWicklungsoptimierung/Sperrwandler

LLC-Converter

Das Software-Tool *LLC-Converter* ist dem *Flusswandler* ähnlich. Es unterscheidet sich im Wesentlichen um das Formular *Grunddateneingabe* und um die Bestimmung der Elemente *Ls, Cs* und *Lp*.

Formular frmGrunddateneingabe

Die folgende Schaltung definiert die Symbole für die Formulare *frmGrunddateneingabe* und *frmStromgrafik*.

Mit der Taste *Optimierung* kann eine gewünschte Regelkennlinie durch drei Punkte festgelegt werden. Bei der *HauptResonanzfrequenz* ist dieser Faktor lastunabhängig immer 1, bei der *BoostFrequenz* wird dieser Faktor lastabhängig durch den *BoostFaktor* und *Rpboost*, bei der *BuckFrequenz* durch den *BuckFaktor* und *Rpbuck* bestimmt.

Der Faktor der *Regelkennlinie* ist das Verhältnis *Up/Ue*. Die *BoostFrequenz* ist nicht frei wählbar, sie wird von der Software berechnet. Als Ergebnis werden die Bauelemente *Cs, Ls und Lp* ausgegeben. Mit der Taste Übernahme werden diese Werte in die darunterliegenden Felder übertragen und stehen für alle weiteren Berechnungen zur Verfügung. Es können jedoch auch andere Werte eingetragen werden.

Mit den Tasten *Frequenzgang* kann der Frequenzgang bezüglich *Cs, Ls, Lp* und *Rp* dargestellt werden. In den Eingabefeldern *Maßstab Frequenz/kHz* und *Maßstab M* wird der Darstellbereich der Regelkennlinie im Grafikfeld festgelegt. Die Taste *löschen* löscht das Grafikfeld.

Die weiteren Formulare *frmStromgrafik, frmKernauswahl,* frmWicklungsoptimierung, *frmKomponentengrafik, frmWicklungsaufbau, frmKernverluste und frmSonderkerne* wurden bereits im Tool *Flusswandler* hinreichend beschrieben.

frmGrunddateneingabe/LL-Converter

DC-PFC-Drossel

Dieses Tool ist für die Berechnung von DC- und PFC-Drosseln prädesdiniert. Der Aufbau ist ähnlich den vorher beschriebenen Tools. Neu ist die Berechnung von PFC-Drosseln als 50Hz-zeitmodulierten Vorgang. Die folgenden Bilder zeigen die Formulare *Stromgrafik* (Sinus zwischen Null und Scheitelwert) und *PFC-Drossel* mit einem Beispiel.

Formular frmPFC-Drossel

Rahmen Grunddateneingabe/Verlustleistung

Im Rahmen *Grunddateneingabe/Verlustleistung* werden die folgenden Werte, die Basis für die folgenden Berechnungen sind, eingegeben:

Pa/W Ausgangsleistung des PFC in W

Ueff/V AC-Eingangsspannung (Effektivwert) des PFC in V

Uz/V DC-Zwischenkreisspannung (PFC-Ausgangsspannung) in V

NmaxAnzahl der Zeit-Scheiben, in die der Sinus zwischenNulldurchgang und Scheitelwert geteilt wird (das Problem
konvergiert sehr schnell, wie man sich durch Versuch
überzeugen kann, 9 ist im Allgemeinen ausreichend)

Nach Abruf von Verlustleistung PFC-Drossel Taste Topologie-Ausgabe erhält man die mittlere Kernverlustleistung Pfe_average/W sowie die mittlere Wicklungsverlustleitung Pcu_average/W auf Basis der Einstellungen von frmKernauswahl und frmWicklungsoptimierung, mit der Taste frmWicklungsaufbau/frmKernverluste auf Basis frmWicklungsaufbau und frmKernverluste.

Die Verlustleistungen werden automatisch nach Rahmen Übertenperaturen übertragen.

Rahmen Übertemperaturen

In diesem Rahmen werden die Verlustleistungen *Pfe* und *Pcu* in Übertemperaturen umgerechnet. Sie wurden bereits aus dem Rahmen *Grunddateneingabe/Verlustleistung* übernommen. Es können jedoch auch andere Verlustleistungswerte eingegeben werden. Mit der Taste *Übertemperaturen* erhält man in den Ausgabefeldern die Übertemperaturen *DTke/K* Übertemperatur des Kerns in K

DTwi/K Übertemperatur der Wicklung in K

Formular frmStromgrafik/DC-PFC-Drossel

	frmPFC-Dro	ossel/DC-PFC-Drossel	
TypWicklung Ringkern-PFC-Drossel 1840W bei 184Vrms und	Uz=380V, Wickl. außen einlagig, innen	zweilagig, als Beispiel voreingestellt, Ergerbnis	: DTwi/K=62 (frmWicklungsopt.) DTwi/K=55 (frmPFC-Dross.)
Crueddetersingste Maduate	internet and a second		
	istung		
		Verlustleistung PFC-Drossel	
Pa/ W	1840,000	Topologie-Ausgabe	
Ueff/V	184,000	frmWicklungaufbau/frmKernverluste	
U2/V		Pfe average 1 753	
Nmax	9	Pcu average 5.304	
		Tos_armage 0,001	
Übertemperaturen			
	Ple/W Pcu/W	Übertemperaturen 55,019	DTwi/K 5 55,015
	1,753 5,304		
			Hilfe

Formular frmPFC-Drossel/DC-PFC-Drossel